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ABSTRACT

A method is presented for solving hydrodynamic prob-
lems Involving large distortions and compressions of the
fluld in several space dimensions. The calculation procedure
introduces finite difference approximations to the differ-
ential equations; the solution in practice is carried out by
means of high-speed electronic computers. The paper dis-
cusses a number of characteristics of the method and il-
lustrates these by presenting results of representative calcu~
lations.
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INTRODUCTION

Realistic studies of the complicated dynamics of compressible fluids
are being made possible by recent development of large high-speed com-
puting machines. Methods are well known for treating problems dependent
upon one space coordinate only ("1-D" problems). For those dependent upon
two or more space coordinates ("'2-D" problems, etc.), several methods of
treatment have been used with success in restricted classes of problems.
Features of these, pertinent to this report, are discussed in Appendix I.

It is our purpose here to present and discuss a method* for solving
2- and 3-D problems which, in a number of preliminary studies, has ap-
peared successful for solving problems involving large distortions in sys-
tems with several fluids.

We acknowledge with pleasure the stimulation, encouragement, and
valuable criticisms that have come from numerous discussions with Garrett
Birkhoff, Eleazer Bromberg, Rolf Landshoff, Robert D. Richtmyer, A. H.
Taub, and Stanislaw Ulam.

*F. H. Harlow, J. Assoc. Comp. Mach., 4, 137 (April, 1957).




Chapter I

THE METHOD

A. General Description

The calculation procedure which is here described combines features
of several of those discussed in Appendix I. The space occupied by the
fluid is divided into a network of fixed cells through which the fluid moves.
The fluid within these cells is represented by particles, each of which carries
a fixed mass of fluld. Their coordinates vary with time as they move , .
through the mesh of cells. Thus we have a Lagrangian coordinate system
superimposed upon an Eulerian one.

For convenience, we refer to the procedure to be described, as the
"Particle-in-Cell Method, " abbreviated "PIC."

B. PIC in One Space Dimension

Characteristics of method are most easily demonstrated in application
to 1-D problems, but PIC attempts competition with other methods only for
2- and 3-D calculations,

Assume only one material to be present in a closed one~-dimensional
box. The system of equations which we wish to solve, subject to initial and
boundary conditions, is:

% , dpu _ oo |
R @

au pu_ _ap
ot T Fex T Tax @ -




Jfn

)

A
T

pOE OE __ bpu
ot *pu ox ox 3)

£(o, T) (4)

T
Il

where

density

!

velocity

p
u
P = pressure

I = specific internal energy

E = specific energy = I +%u2
Relation (4) represents the equation of state of the fluld. The absence of
heat conduction, viscosity, or other dissipative mechanism means that the
true solution may possess or develop mathematical singularities. This
possibility is ignored at first.

The box is divided into cells of equal length, s, labeled with index
c(c=1, 2, ..., L). Into this, particles of equal mass, m, are arranged
with number N, in each cell in such a manner that the initial density profile
1s represented.

The calculation to advance the configuration in time proceeds In steps
or cycles, each of which calculates the desired quantities for time t + 0t In
terms of those at time t (an “explicit" time advancement procedure). This
introduces nothing novel, however, as long as 6t is small enough to satisfy
criteria discussed later. Our principal attention is devoted to the spatial
features of the calculation,

A division of each cycle of calculation into three phases i1s convenient.
In Phase I the Eulerian field functions are changed, neglecting transport due
to fluid motion. Phase II accomplishes the motion of the particles to their
new positions. The transport corrections are accomplished in Phase III,
Generally, a Phase IV is also added in which various diagnostic functionals
of motion are calculated for that cycle.

Phase 1 N m

Fach céll has density, Pe = , specific internal energy, I,, velocity,
U;, and pressure, pp = f(pc, I;). All of these are the values at the cell
centers, but are assumed to hold for a particle anywhere in a cell. Dropping
the transport term in Equation (2), and transforming it to our finite difference
form,




s ot 28 (pc+1_pc-1) o ()

A similar treatment of Equation (3) leads to

Ncm 8Ic ¢":)uc 1
ot % —8—t- =~ T2 [(pu)c+1 - (pu)c—l] ()

These equations can be combined and rearranged:

8

Buc 1
ot 2N m (pc-l _pc+1) (7
ot 2N m pc--1( e-1 c) - pc+1( c+1 uc) ®) : .
When the intitial and boundary conditions have been specified, then the .

quantities on the right sides are all known at time t and the time deriva-
tives can be calculated.
Let t = nét. Then

n _ ,
T o=u + ot —auc*' o
c ¢ ot /

- (9)
E
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where the superscript represents the time cycle number and the tilde sym-
bolizes the fact that these advanced time quantities are yet to be corrected

by the transport terms.
An alternate form for the energy equation can be obtained. If in

Equation (6) we make the change,
2
u %ug - lauc L1 ;)2 un)z
c ot "2 at 20t | T

and shift the result to the right side of the equation, we would obtain, in
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place of Equation (8),

—ec___1 2 —_ 1
at Zét[ (un) J 2N m (Pe-1"c-1 ~ Pes1 Yer1) (8%)

All the calculations reported in this paper used the energy equation in the
form of Equation (8). Boundary conditions, the same for either form, are
discussed later in connection with questions of conservation.

Phase I

The particles are moved. Although each particle in cell ¢ now carries
momentum m'ﬁc, it i1s moved according to a "velocity~-weighting" procedure.
The effective moving velocity is obtained by a linear interpolation according
to the position of the particle between the centers of two cells, using the
velocity at each center. Labeling the particles with j, we write

n+1 n :
xj = XJ + U e ot | (10)

The value of "u'eff is computed from values of uz.

Phase III

The transport corrections are accomplished in this phase. For those
cells which change particle number in Phase II, additional calculations are
required. The procedure is called “repartitioning." Otherwise, the tilde
values of Phase I become final, and the cycle is complete,

Suppose that the only boundary crossing involves a particle going from
cell ¢ - 1 to cell c. For cell ¢ = 1 the only change recorded is

. n+! n
Ngti = Nz = 1. Correspondingly N, is Increased by 1., e NC_ Na + 1
Furthermore, the velocity of cell ¢ becomes

~

~v
u +u

uz(:+1 __¢ I(i c—ly ’ 11)
N +1
c

/.’ [ , | e
{! i YarAn € ( fﬂl\dwﬂf mv?l whole i’

A

so that the momentum of the system is unchanged./ The kinetic energy of

the system drops “however, the change being
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6 KE = — o - (Tf —'ﬁ’> (12)

The specific internal energy is modified by the transport effect and, to con-
serve total energy, is increased by the amount of loss in specific kinetic

energy.
n~ ~
N I+I1 _
2+1 _ cnc e-1, |6 IflE[ 13)
N +1 m(N + 1>
c c

When a cell has both outgoing and incoming particles, the latter repartition
only with those which remain after the outgoing ones have left. Otherwise,
an unreal transport of energy is added.

C. Discussion of 1-D PIC Method

1. Energy and Momentum. The difference equations of Phase I can be
obtained in several ways and written in several forms. A discussion is
given in Appendix II. In particular, Equation (8) is more complicated ‘than
the analogous equation one would obtain by starting with the differential
equation

udl._

9x a X (14)

instead of Equation (3). The reasons for our choice are brought out by
looking at the problem of over-all conservation of energy in Phase I.
The total energy of the system at time t is

g = N m [1’; + %(uﬁ)zJ (15)
[¢]

Likewise, by the end of Phase I it has changed to

_Z Nm[N %( )] (16)
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the total change being
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c | P
P puym
These, with Equations (6) and (9), become B Pt o
e
v "/j L
c 2
- i . e
6E = 6D . Z [(pu) )c+1] - (19)
2
2 du
_ (6t) _c
0= 5 Nm|—F (20)

In terms of two fictitious cells beyond the system (¢ =0 and ¢ = L + 1)
Equation (19) can be written :

(ow, + (u; W + (pu)m] o

6E = 6D + 6t [ 2 - 5
The cancellation of terms in pairs, exploited here, would not have occurred
had we started from Equation (14) in the difference equation derivations.

The important quantity, 6D, represents the only discrepancy in energy
of the entire cycle calculation, since Phases II and II conserve energy
rigorously. This nonconservgt»ion would not have appeared had Eguation 8"
been used for r internal energy calculgtions Since 6D > 0, the “total observed
“energy rises monotonically above that which theoretically is present. This
fact can, Indeed, be generalized to include multidimensional applications of
PIC with various boundary conditions, conservative or not. 6D is an im-
portant Phase IV functional to be calculated since its disagreement, beyond
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machine round-off, with the observed discrepancy is a powerful indicator of
almost any error, mechanical or human,

Knowledge of 6D is of value also for the purpose of limiting the size of
ot. Since 6D is proportional to (6t)2, its cumulative effect over a fixed time
interval is proportional to 6t. The time interval should be small enough so
that the over-all discrepancy through a problem is insignificant. Effectively,

this means uét/u <« 1 is required, since the ratio of the specific discrepancy

"to the specific kinetic energy is just (ﬁét/u)z. Notice that when the velocity

EPSE e Y

‘starts from zero, then in the first cycle, all the kinetic energy that is pro-
duced goes into discrepancy! ‘

Tests have shown that when 6t is small enough to produce negligible
values of 8D, then all inaccuracies due to time differencing are negligible,

In this case, calculations using either Equation (8) or (8') are equivalent, and
the more convenient form may be employed.

Equation (21) shows how the boundary conditions are to be chosen for
conservation of energy: the average value of pu (the energy flux) must vanish
at each boundary. With p, = p; and yy = —ug the boundary is reflective.

No other arrangement is reasonable in this case.
Since Phases II and III rigorously conserve momentum, we may derlve

“V"(from Equations (5) and (9) that the change in momentum, 6M, in a cycle is

given exactly by VI L zcﬁfm.?x'c - E flew US = Symfeul) s Z;«féé)n
= S et L o A -
p,+P; P *R 2t R el = 3 2 (et
6M = ot S (22)

Comparison of the observed change with this theoretical change in each cycle
makes another good calculation check, since the agreement should be to within
machine round-off errors.

A complication arises in the Phase I calculations wherever a cell be-
comes empty. Equations (7) and (8) cannot be used for such cells; indeed,
one need not bother to calculate in them at all in Phase I. But unless special
care is devoted to the adjacent cells, the system will suffer significant
energy discrepancies. A reasonable procedure which is consistent with the
conservation laws is as follows. Let cell ¢ be empty. When calculating in
cell ¢ ~ 1, consider that cell ¢ has p, = —P,_1s U = *Us_3- When calcu-
lating in cell ¢ + 1, consider that cell ¢ has p, = —Pc+1» Ue = +Uc+1. Sim-

\/'«\‘i;-’ﬂar procedures hold in the applications of PIC to 2-D problems.

P U I ) ~ O P B A AR P A [ .
\"\_:C(-“. CVL-y HEEIE B 5/ :/ £ iy oY -(,I::/ L,v(/ }4,—5;,",3

2. Diffusion and Accuracy. Certain other important characteristics of

PIC are shown by the following analysis.
We define p§+a as the average mass per unit distance at time nét and -

- 14 -




position (¢ + a)s. Then to lowest order in the cell size and zero order in
6t, the result of all three phases of the calculation can be summarized by
the equations

ou, 1 Ye1 7 Y%

t 2p 8 (pc—l - pc+1) T Pe1 Yo P8 (23)
BIC 1
ot T 2p 8 [pc-l (uc—l - uc) ~ Pes1 (uc+1 B c)}

La—L 1 2
+p, 10 4 + p. iU 1(u -—u) (24)
c-3 C—3 P8 20 8¢c-3 c=3 \ c=1 ¢
s —2 = u L —p (25)

where it is assumed that all the velocities are positive in the direction of
increasing cell index. Also,

u +u
cxl

=-c ¢
u, = 2 (26)

Equation (25) is clearly in conservation form. The other two can also be
put into the completely conservative forms

1
ot 2s [(pu)c—l - (pu)c+1] *s (Ec—l Pet et ™ E, pc+%uc+%)

by some simple algebraic ménipulations.
Now expand, by Taylor series, the right side of Equation (23) about the
center of cell ¢c. Dropping the index we get

ou__9p 08U ﬁ.('a_u) 2
Pot ™ "ox  PYox " ex Xax + 0(s%) (27)
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Similarly from Equation (24),

2
oI ou )] 61) <8u> 2
= e — T = 1 —
Pot™ " Pox P %x " ox (A <)t M) T 06 (28)

and from Equation (25)

9p _ _opu
5t = " ox T O(s ) (29)
where
1 :
Al = 5 Pus (30)

From these results, many of the most striking characteristics of PIC
can be learned. Of particular interest is the fact that repartitioning does
incorporate, to lowest order, the correct transport terms into the equations. s
The next order term in the momentum equation has exactly the form of a
ngrue' viscosity term with coefficient of viscosity A' = %pus The corre-
sponding term, A'(u/ ax) , in the energy equation also has the proper form x
of a "rue" viscosity effect.
The form of the one-dimensional effective viscosity A' bears a striking
resemblance to the "linear viscosity" introduced by Landshoff*:

1
Ai‘ =7 pcs

where ¢ is the local sound speed. The resemblance to the classical arti-
ficial viscosity of von Neumann and Richtmyer** is less close, as theirs
possesses a velocity gradient factor.

The A' terms have several effects on the calculation. Most important,
they symbolize the dissipation which is present in regions of raplid change,
such as regions which would contain shocks in the true solution. They allow
the calculation to reproduce correctly the macroscopic features of a shock
without requiring special care concerning its microscopic features.

The A' terms also symbolize inaccuracy in the calculations. But at the

* R. Landshoff, Los Alamos Scientific Laboratory Report LA-1930, "A Nu-
merical Method for Treating Fluid Flow in the Presence of Shocks, " De-
partment of Commerce, Office of Technical Services, Washington 25, D.C. (1955).

**J . yon Neumann and R. Richtmyer, J. Appl. Phys., 21, 232 (1950).
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same time they suggest a cure, since the effect of the terms can be made
cumulatively as small as desired by decreasing the cell size. Various
specific criteria can be established of the following sort. Suppose that p and
u are everywhere constant in space. Then the condition that the diffusion
term be negligible compared with the transport term in the energy equation

< )

2
o1
ax2

The right side is a measure of the distance over which the slope changes
appreciably. By similar conditions applied to other field functions one may
arrive at the general statement:

. PIC will produce relative errors in the equations of motion which are
roughly equal to the ratio of the cell size to the smallest physically signif-
icant dimension of the system.

There is some hope that this statement is pessimistic. Certainly some
functionals of the motion will be more truly represented than others when (
the mesh is coarse. Examples of this are presented later.

One catastrophe that can occur in PIC calculations arises when the cell
next to a left reflective boundary has an empty neighbor on its right. The
energy Equation (8) for the cell becomes ’

(31)

8l _ _pu
at ps.

and the acceleration Equation (7) becomes

du _p

ot ps

If u and I (and thus p) are negative, then the cell is unstable since both 8I/ot
and 9u/8t are negative. Starting from the moment of zero velocity, the time

required for the temperature and velocity to reach —~ is T__ = _1r_

(’Y“]-)uo j
where we have assumed a polytropic gas of exponent y and an initial accel-
eration in the cell of —

Equation (28) shows that negative temperatures can arise if the cell

size is large enough. Suppose that I and p are both zero. Then 9I/8t
can be negative if

-17 -
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With u > 0 and 81/8x < 0, this condition becomes

2 (o) <opu|(2) 22
8xp ox P ox s 18x

in order to produce negative temperatures. As s becomes small there is
reached a value, 8, corresponding to a particular continuous configuration,
such that for smaller s, 8I/8t is no longer negative. Physically, this corre-
sponds to passing the point beyond which internal energy is transported into
a cell faster than it can be converted to kinetic energy. If 81/9x = 0, then
the requirement for 81/8t < 0 becomes, instead,

2 2

o1 ()
8x2 ox

which means that I must be locally a maxdmum. Since, however, I = 0, we
see that this situation does not arise.

A further condition (more stringent than necessary) is derived by setting
9u/8x = 0. In that case we see that

oI
2 [on

)

which means that to avoid negative temperatures, s must be smaller than the
distance over which p|81/ x| changes appreciably.

These ideas indicate some of the causes and cures for negative tem- -
peratures and the Inaccuracies they symbolize. Peculiar equations of state
and other fictitious situations can also cause negative temperatures.

The time iInterval, 6t, between cycles has already been restricted by
requiring the energy discrepancy of Equation (20) to be sufficiently small.

It is also restricted by the condition (cét)/s < 1 which is required for A
stability of the difference equations. Experience shows that even a slight
violation of this condition leads to catastrophe. A further restriction is the
requirement that (w,.6t)/s < 1, where upy,x 1s the maximum fluld speed in
the system. This mechanical restriction arises from the fact that no

- 18 -




allowance is made for a particle to travel more than a cell width In any one
cycle. The following conditions probably make the last restriction even
stricter: The success of PIC depends, clearly, upon there being a statistical
averaging effect. It 1s reasonable to suppose that this will be enhanced if,
during a certain elapsed problem time, the particles experience many differ-
i ent orientations relative to the mesh. This will occur if (Upax0t)/s < 1 so
. that many steps are required to move a particle across each cell.

The difficulties concerning statistical fluctuations and their proper
averaging in PIC raise, perhaps, the most difficult question to discuss in
desired generality. There are situations in which one would not expect
averaging to proceed well. An example is the case of a plane steady shock
‘hitting and reflecting from a rigid wall. Theoretically, the fluid behind the
reflected shock comes to smooth flat profiles of temperature and density, and
the material velocity is zero. Actually, we find that PIC leaves the fluid in
a perturbed state with significant fluctuations about the constant values. These
fluctuations move, roughly, with sound speed. The particles cross boundaries
only infrequently if the number of them is small, so that the damping due to
repartitioning is slow. Actually, the fluctuations may grow owing to the length
of persistence of cell-to-cell particle number differences.

It is found that the most satisfactory results are obtained from PIC for
those problems which have a general mass speed that is_ comparable to
sound speed or greater. Systems with large positive accelerations are also
well-treated.

Difficulties are generally encountered in problems with small perturba-
‘tions in a fluid which is otherwise nearly at rest and in problems in which
the fluid is supposed to decelerate to persistent small speeds. Further, in
accelerating fluids, if material speed remains much smaller than sound speed
for a time long enough for sound to travel across many cells, then poor re-
sults can be expected in the form of large fluctuations about the proper
values. A number of these difficult cases are illustrated in Chapter III.

The origin of these fluctuations lies in the instability of the basic ex-
plicit Eulerian difference equations. As the fluid speed becomes small rela-
tive to the mesh, A' of Equation (30) decreases, and the equations approach
the unconditionally instable form. Small perturbations tend to grow; how~-
ever, these produce local velocities which in turn increase the effective
viscosity, preventing unbounded growth. If the number of particles per cell
is increased, the perturbations do not grow so large, but no amount of in-
crease of particle number can cure the difficulties. To effect a complete
cure, we need a stabilizing mechanism which persists to zero speed. The
requirement is for a dissipative or conductive process whose cumulative
effect is proportional to cell size.

- 19 -




An experiment with a crude approximation to heat conduction for the
most pathological cases was fairly successful, and a more refined technique
of using this or similar stabilizers may make calculations of marginal prob-
lems possible. Such artificial procedures are not required for the large class
of problems to which the method is suited. None of these smoothing methods
was used in any of the problems reported in this paper. '

3. Several Materials. Another problem concerns the pressure calcu-
lations when two or more materials are present in the system. Suppose that
a cell of volume 7 (one- or more-dimensional) has particles of various ma-
terials, ¢, which have total masses m . Each material occupies a fraction,
oy (to be determined), of the volume of the cell.

IR =

For each material there is an equation of state of the form p = £ (o, ) which
can be written

o
Py = fa(oa'r ’ Ia> (33) .

Now, in reality, across any material discontinuity the pressure is continuous
except, possibly, for certain discrete moments of time. This leads us to
postulate that the pressures of all the materials in the mixed cell are always
the same. Equating these, together with using Equation (32), gives just
sufficient information to find the unknown quantities o ,.

As an example, consider all the materials to be polytropic gases for
which

-1
) o, ym I

Pa—

g T
o

Equating all the pa's to p gives

(YOZ - 1) mozIa
o =
a pT

so that, from Equation (32),
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In this case the total pressure is just equal to the sum of the partial pres-
sures that would be observed if the gases intermixed, each filling the whole
cell. This, of course, would be true for any system of materials whose
pressures are directly proportional to their densities.

Returning to the general case, we now specify that all the materials in
the mixed cell have the same velocity. In reality, only the normal compo-
nent of the velocity is continuous across a material discontinuity. Forcing
the tangential component also to be continuous is equivalent to introducing a
shear viscosity, which will be discussed in more detail in Chapter II.

In Phase I the rate of change, 8I'/ot, of the entire internal energy of
the cell is calculated using an equation analogous to Equation (8). This is to
be distributed among the materials such that

oI

o_ or
; mos ot (34)

(A separate temperature is kept for each material in a mixed cell.)

From the energy conservation equation it is seen that if pressures and
velocities are the same for all materials in a close vicinity, then so is
p81/8t. Thus, with A independent of «,

m 9l
a o

T orat A (3)
o

Putting this into Equation (34) we obtain

_1laor
A= T ot
or
aIa oa or 36)
ot ma ot (
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Thus, each materfal in a mixed cell gets a different specific internal energy,

allowing contact temperature discontinuities to arise.

In Phase III the incoming particles share their internal energy only
with others of the same kind. In the velocity adjustment, each material
shares In the internal energy increase in an amount proportional to its final

mass in the cell. "
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Chapter @I

EXTENSION OF METHOD — TWO SPACE DIMENSIONS

Several problems arise with the introduction of a new degree of free-

dom for the fluid motion.

Some of them are demonstrated by a plane, car-

tesian, two-dimensional example. Others arise only with the introduction of

other coordinate systems.

A. The Plane, Cartesian, Two~Dimensional Box

The box is divided into a system of square cells of side length s, in

which the fluid is represented by particles.

of only one kind of fluid.
Cell number 8

lower left corner. Cell number

Y.
has center coordinates <xJ> =

g + 1/2)s !

(1 + 1/2)s| " By this convention,
which we use consistently, the cell
corners have coordinates which are
integer multiples of s.

N
in cell number (J) is

i uj All
1

other previous notation is applicable .

here. :
The density in cell (i) is

The velocity

is the one in the

e

We assume for now the presence
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j Njim
by = .82 (37)

so that, analogous to Equations (7) and (8), the Phase I calculations are

b
ou
i 8 j b
- T P, , —P (38)
t 2N31m<i-1 1+1>
]
v
i 8 j=1 j+1
L. s (JT_p (39)
e )

a1 ‘
i__s ] j 3 ] i i
Bt [pi—l (u1-1 - “1) P (“1+1 - “1)
i m

et () -t ()] e

1 i

Values of '?ijl, "v'Ji, and 'fji are obtained as in Equation (9).

The Phase II particle motion is again according to a velocity weighting
procedure. A square of cell size is
placed around each particle, and the
area of overlap into each neighbor cell
determines the fraction of that cell's
velocity used in the movement. This
is done for each component of velocity.

. Allowance must be made for re-
cording the passage of a particle into
any of the eight neighbor cells. The
repartitioning of Phase I adjusts the
velocity components separately in order
that no change in vector momentum
occurs. Thus, for example, if one
particle enters cell A from cell B,
then
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n+l NA uA + uB :
Uy ST o (41)
NA +1
n+l NZ - |
v = — 42)
A Nn +1
A
The associated change in kinetic energy is
OKE = —— ~——N-n4— [(ﬁ’ -1 )2 + ¥, -V )2} (43)
2 n A B A B
N, +1
A
so that, analogous to Equation (13),
N T o+T
In+1 __AA I N |6 KE| (44)
A NT o+ 1 m(N> + 1)
A Ny

Again, if particles had also left cell A in this cycle, then the incoming
particles repartition only with those that remain. Clearly, the result of
repartitioning for several entering particles is independent of the order of
treatment.

The one-dimensional energy considerations of Chapter I apply‘to this
problem. The theoretical discrepancy is

2 2
j
2 ou BVJ
(oY) ' i i
6D = - Eij NJi m <_8t > + <————at ) (45)

Also, boundary conditions are determined by the fact that each border cell
has an energy transfer to the outside of the system, which depends upon the
pressure and normal velocity in the fictitious outside cell. The calculation
is analogous to that leading to Equation (21).

The treatment of empty or mixed cells in this example follows as a
direct extension of the procedures of Chapter I.
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With regard to reflective boundaries, the two~dimensional problems
introduce the following new difficulty. Suppose that a rigid obstacle with a
corner is to be represented by a re-
flective boundary system - the edge of
the shaded section. With 6t small
enough to satisfy the accuracy criteria,
the velocity weighting assures that no
particle will ordinarily enter the shaded
section. The exception arises when the
particle is in the section near the cor-
ner outlined by dots. There the weight-
// ing procedure can carry the particle

Z

into the shaded area no matter how

small 6t may be. To overcome this,

//Ay/// 47 a process may be used whereby the

il
AV, / n+1
NS y/ // new coordinates of the particle, <Jn+1> ,

X

n+1 n
_ are replaced by zn or )y{n+1 , de~

pending upon which will remove the particle from the forbidden zone.

The velocity weighting causes an effectlve drag area to be formed at
slip lines between fluids. This is not present at boundary slip lines because
of reflectivity. The drag is not dissipative nor does it propagate into the
system away from the slip line as long as the slip is along a coordinate line.
For diagonal slips it is not possible to construct a straight slip line, because
at least some characteristics of it must stair-step along coordinate lines.
What is really calculated in this case, then, is approximation to the flow past
a rough boundary. This, of course, will send a signal away from the bound-
ary whether or not viscosity is present.

By the same procedure that led to Equation (27), we may derive the
lowest order statistical effect of PIC in this plane, 2~D system.

di _ By, 8L} 8 (), 8
Prat ~ Vp+ax (Ax 8x>+ay <}\y8y> (46)

where

<i§> = %PS (X) | (47) ;
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The form of this result shows that the effect of repartitioning is not directly .
analogous to either shear or bulk viscosity in the usual sense. It does,
however, have some of the properties of a real bulk viscosity but none of a
real shear viscosity. There is, for example, dissipation due to compression.
Several of the calculations discussed in this paper demonstrate the effects

of repartitioning. '

B. Problems in Other Coordinate Systems

PIC is adaptable to cylindrical, spherical, and other coordinate systems,
and we have tested a variety of situations in which the configuration is inde-
pendent of one of the space variables (thus 2-D problems). In these, the
particles may no longer be mass points, but more complicated geometrical
figures, each having a different fixed mass. A number of difficulties arise
in such systems. The ways in which one can write space differences, de-
termine boundary conditions, effect particle movement and repartitioning, etc.,
have been tested in only a few simple cases. The manner of making gener-
alizations is an extensive subject requiring careful treatment; we are not
presently prepared to report on any but the simplest of such situations.

The use of cylindrical coordinates for systems with azimuthal symmetry
will illustrate the sort of difficulties encountered. Consider in particular the
energy equation

- V- ol - (48)

which, in cylindrical coordinates, may be written in either of the (differen-
tially) equivalent forms

dE _ 1 o(ur) 3(pv)

P Et- - r or oz (49)
dE _ _pu oy _ o(pv)
P&t r or oz (50)

where u and v are the velocity components in the r and z directions, re—
spectively. When these are written in difference form, they are no longer
equivalent. A criterion for choosing between them is based on the considera-
tion of a spherical system. It can be shown that one form of difference
equation from Equation (49) fails to preserve sphericity, the discrepancy
being very large between corresponding cells near and far from the axis.

The same form from Equation (50), however, can easily be shown to preserve
sphericity. (See Chapter IV, Section C.)
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Boundary conditions can be derived by considering the energy equation,
With cells along the axis labeled j and those in the radial direction labeled
1, the change in energy of the system in a cycle is, using difference equations
from Equation (50),

i ] ]
Py * P (Pu)y

28 r

OE = 6D — z ’riﬁt
1

1

. [(pv)i‘“1 - (pv)ji'l]} 1)

where 7] = 27Ty sz (volume of cell). The axlal terms cancel in pairs, leaving
boundary conditions at the ends of the cylinder which are analogous to those
obtained from Equatifon (21). Employment of a parts summation procedure
for the radial terms shows that they, too, cancel in pairs; and in terms of

a fictitious cell, 1 = —1, "within» the axis, conservation of energy requires
the peculiar condition

ol | = o) 52) R

together with a more complicated condition at the outside edge of the cylinder.
Arguments involving the preservation of sphericity show that the effec~

tive velocity for moving particles must be derived by area-wise weighting,

as in the plane case, with no weight being given to the volume of rotation of

the cell. '
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Chapter II

ONE-DIMENSIONAL TESTS

A number of one-~dimensional tests were performed to reveal the
characteristics and limitations of PIC. Most of the difficulties exposed in
these tests are also present in the two-dimensional applications. The most
significant results are summarized in this chapter. The calculations were
performed on IBM Electronic Data Processing Machines, types 701 and 704.

A. Simple Steady-State Shock

PIC was coded for the machine calculation of a shock passing through
a polytropic gas in a one-dimensional box. The left boundary of the box
allowed for the inflow of gas in the shock state. The further progress of the
shock was then calculated by PIC. Figures 1 and 2 show the appearance of
the temperature and velocity profiles of one of the test shocks after it had
traveled a number of cells. Its appearance was established quickly, and then
was maintained with very little change. There were four particles per cell
behind the shock and one per cell ahead. The adiabatic index was y = 5/3.
The curves were fitted by eye to pass through the value at each cell center.
The shock has been smeared to a width of about two cells, one behind and
one ahead. (In these and later figures, s = 1.)

As a more stringent test, the code was adapted to allow calculation for
two gases, both initially cold and at rest. They were of different densities.
The same shock as above was fed in from the left and allowed to develop
its steady-state configuration before hitting the other gas. The results at
late times are shown in Figures 3 and 4 for the case in which the second
gas was much lighter (rarefaction reflected) and in Figures 5 and 6 for the
case in which the second gas was much heavier (shock reflected).

In these shock problems, the smoothness of the velocity profiles is an
Indication of the proper entropy production across the shock. The smearing
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of the shock width is no greater than that produced by other finite difference
methods. The method of treating contact discontinuities varied in slight de-
tail from that which is described in Chapter I.

B. The Closed One-Dimensional Box

A machine code was devised which would calculate the configuration
changes of one or two fluids in a closed one-dimensional box. One of these
fluids, A, was a polytropic gas; the other, B, could have any equation of
state within rather wide limitations.

1. The Shock Tube. This problem constitutes a stringent test for one-
dimensional calculation procedures, since a shock, a rarefaction, and a con-
tact discontinuity must all be represented.

Only the gas was put in the tube; initlally it was at rest and uniform
temperature. A diaphragm separated two regions which were at different
density and pressure (we take the high density to be on the left). At t =0,
the diaphragm ceases to exist, and a rarefaction then moves leftward while
the contact discontinuity and a shock travel to the right. Be@& the dis-
turbances hit the ‘walls of the box, there is no characteristic length in the
syit_qm, so that the effect of changing cell size is only to change the “time
scale. The only artificial parameter that can be varied for a given initial —
physical situation is N, the average number of particles per cell. Several
interesting features are observed from the resulting velocity profile:

(a) The initial perturbations in the system, resulting from the way in
which the problem was started, introduced an oscillatory pattern superimposed
on the correct velocity profile. This means insufficient entropy production
in the early stages. The fluctuations travel with the shock front, not in-
creasing in amplitude. At any fixed position, they die out, and the velocity
comes to its proper value. These results are shown in Figure 7 for the
initial configuration of a 5-to-1 density ratio, y = 5/3.

(b) Increasing the number of particles per cell evex;ywhere (maintaining
the same initial density ratio) reduces the amplitude of t the fluctuations. In
(2), there were intially five particles per cell on the left and one per cell on
the right. Multiplying these numbers by two produces roughly one-half the
amplitude of oscillations at any stage of the calculation but otherwise leaves

the rarefaction appearance, plateau height, and shock speed the same.

(c) Smaller initial density ratios across the diaphragm produce rela-
tively greater oscillations. A problem with 2-to-1 ratio (two particles per
cell on the left, one per cell on the right) produced tremendous oscillations,

- 30 -




200 to 300 per cent of the true velocity. Multiplying the number of particles
by six reduced the fluctuations to an amplitude of less than 50 per cent of
the true velocity. In both cases, however, the oscillations were centered
about the true plateau, and the rarefaction and shock speeds were well pro-
duced. This fact is significant in that it demonstrates that PIC is stable to
very large fluctuations and that these fluctuations, even when extreme, tend
in the average to produce the gross configuration features.

2. Gravity Problems. Again, only the gas was in the tube, this time
at constant density and temperature and at rest everywhere. The box was
100 cells long and closed (reflective) at each end. An acceleration field of
magnitude g was applied to the right. Until an element of material feels the
signal from the wall, it accelerates uniformly, and the velocity profile re-
mains perfectly flat. Theoretically, a shock is formed at a distance cZ/Zg
back of the wall (¢ is the material sound speed). At the left end, a rare-
faction is produced. As discussed in Chapter I, the material which comes to
rest at the right end will not be treated well; we do, indeed, observe resid-
ual fluctuations. The smoothness of the rarefaction zone, however, depends
upon the magnitude of the acceleration. If this is small, the slow-speed
fluctuations have a chance to become appreclable; if it is large, then no
fluctuations appear. Smoothness seems. to require c2/sg < 10. This, un—
fortunately, means that at the end where material piles up, a shock theoret-
ically will be formed at a distance back of the end somewhat less than
1/10 s. These results put severe restrictions on doing gravity problems
with PIC. No cure for these difficulties is effected by decreasing 6t, the
time for a cycle.

Two typical examples are shown in Figure 8. Even in the fluctuating
example, the curve is tolerably smooth at the higher velocitles (>half of
sound speed), showing that perturbations to the flow do not grow in rapidly
moving systems. The smoother curve was allowed to develop four times
longer than at the time shown. By then, a large cavity had formed at the
left, and the rarefaction wave was still smooth. The shocked region was by
then quite thick and poorly represented. Profiles at typical later times are
shown in Figure 9,

Experiments also showed that a small perturbation introduced into the
middle of the box grows if cz/sg is much larger than around 10, and other-
wise it damps. Increasing the number of particles per cell does not cure
the situation, either here or in the rarefaction.

The case of infinite acceleration was accomplished by running the
problem of a gas esc¢aping into a vacuum; the results showed good agree-
ment with the theoretical rarefaction profile.
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3. Coarse Zoning Test. A clear demonstration of the qualitative dis~
crepancies that can occur when zoning is coarse is given by the following
example:

The box is in three sections; from left to right are fluid A, fluld B,
and vacuum. Initially, the two flulds have the same pressure and both are
moving to the right with the same speed. One expects fluid B to rarify at

first, then compress, and heat as it

crowds against the right end. A shock
| should then propagate back through
fluid A. These qualitative features are
observed if the zoning is such that
fluld B, when most compressed against
the end, occupies more than one cell. If, however, fluid B 1s all compressed
into one cell, then a vast qualitative difference is observed from that ex-
pected. The cell of fluild A next to the hot, crowded, fluid-B cell drops in
temperature when it should rise; its temperature becomes negative. No
shock pulse is sent back into fluid A until the negative temperature is suf-
ficiently raised by repartitioning of the returning fluid B, but this is much
too late. These features are as predicted in Chapter I.

C. Expanding Spheres

Two companion spherically-symmetric calculations (one-dimensional in
spherical coordinates) were run under the following code names:

OBOE, using the spherical form of PIC.
ROBOE, using well known Lagrangian hydrodynamic methods.

The problems started with the following configurations. Three concentric
spheres of radii 5, 20, and 30 marked the boundaries separating, respectively,
a central piston (not zoned), perfect gas A, perfect gas B, and a vacuum,

The gases were initially cold and at rest. Gas A was much less dense than
gas B.

The situation was generated by allowing the piston to expand, at first
accelerating, then with nearly constant velocity, then decelerating.

ROBOE was run first; some of the observed features are shown in
Figures 10 and 11. In order that the OBOE problem have the same input at
the piston the following procedure was adopted: The 'piston cell" was de~
fined as the cell with the piston, except that if that cell has no particles,
then the piston cell included also the next cell beyond. The input data in-
cluded both the piston speed and the total energy of ROBOE as functions of
time. The particles in the piston cell were forced to have the piston speed.
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Knowing the kinetic energy Input that this produced per cycle, we subtracted
this from the total energy that should have been added according to ROBOE
and inserted the difference as internal energy increase to the particles in
the piston cell. This was equivalent to having a heat conduction at the OBOE
piston to Insure the same boundary conditions there as in ROBOE. This did
not In itself force agreement between OBOE and ROBOE in any other respects.

The energles of OBOE are shown in Figures 10 and 11, together with
those of ROBOE. Note the large relative fluctuation of internal energy in
OBOE at early times., The momentary negative internal energy arose be-~
cause the true thickness of material which should have the piston speed was
gsomewhat less than the width of the piston cell,

There is some difference between the times at which the kinetic energy
in gas B began to rise. This can be traced directly to the fact that the
shock front was steeper in OBOE than in ROBOE. The initial rise in B
kinetic energy in ROBOE was due to the precursor ahead of the shock. This
1s well shown by Figure 12 where the velocity profiles for the two problems
are shown at a time just before the shock hit B, and by Figure 13 which
presents the motion of the A-B boundary for the two problems as a function
of time, It 1s not known which calculation more closely reproduced the true
physical picture,

The two temperature profiles are shown in Figure 14 for a time which
is the same as In Figure 12, Figures 15 and 16 show velocity and tempera-
ture profiles, respectively, for a rather late time in the problems.
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Chapter IV

TWO-DIMENSIONAL CALCULATIONS

Various two-dimensional calculations have been performed with PIC;
several of those which demonstrate the characteristics and capabilities of the
method are discussed here, An unfortunate feature of these problems is
that no solutions for comparison are available except in the simplest cases.

A. The SUNBEAM Code

Two different polytropic gases are arranged in arbitrary configuration
in a plane, two-dimensional, rectangular box, the sides of which are rigid
(reflective) boundaries. SUNBEAM then calculates the changes of configura-
tion in the manner discussed in Chapter II. A number of different kinds of
calculations can be done with such a code. Two examples follow,

1. Interface Motion Studies. Figure 17 shows the rectangular box, to-
gether with the interface between gases at various times. Initially, the gas
at the right was of low density, but very hot so as to have a high pressure
compared with the fluld to the left which was of greater density but cold.
There were four particles in each cell at the start,

A number of variations have been run. No apparent difficulties have
arisen in the calculations; the results agree with the qualitative predictions
that one can make, ‘

2. Cylindrical Shock Pulse. Figures 18 to 21 show a sequence of
particle configurations resulting from the following initifal conditions: The
two gases (simulating alr and ground except that the density ratio was 1 to
20) were both at the same pressure, at constant densities, and cool except
that within a circular segment of five cells radius in the upper right corner,
the temperature was 100 times greater than in the rest of the alr, (Those
cells that were cut by the circle had appropriate fractions of the large
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central temperature.) Again, there were no computational difficulties in
running this problem,

B. The KAREN Code

A single polytropic gas is confined in a plane, two-dimensional, rec-
tangular box, the top and bottom of which are rigid (reflective). Horizontally,
the system is considered to be one period of an infinite perfodic system.
This is accomplished by taking.for the conditions In the fictitious cells just
to the right or left of the box, the conditions just on the inside of the corre-
sponding other side. Also, particles passing out across one boundary, pass
in across the other. Further, a fixed, rigld (reflective) object of arbitrary
shape (as long as its boundaries follow cell boundaries) can be placed any-
where in the box. Initially, the gas may be homogeneous in temperature,
density, and velocity (moving, say, to the right at a specified initial Mach
number), or the gas may commence motion from rest under a horizontal
acceleration fleld. A large number of problems have been run for various
initial situations. An example will typify the kinds of results: The box was
square, 20 cells on a side. The obstacle, attached to the bottom, was a
rectangle 10 cells high by 6 cells wide. Initially, the gas was homogeneous,
moving to the right at near Mach 2. Figures 22 and 23 show, respectively,
the horizontal and vertical momenta of the gas as functions of time.

Problems have been run in which the obstacle was placed symmetrically
in the center of the box. The flow remained symmetric until a slight per~
turbation was introduced, whereafter vertical oscillations in momentum grew
to much greater than the perturbation intensity and showed a frequency from
which a very reasonable Strouhal number could be derived.

C. Cylindrical Coordinates

In connection with the eylindrical-coordinate procedure discussed in
Chapter I, we mention one problem that was designed to test the preserva-
tion of sphericity. This was the calculation of an expanding sphere of hot
gas moving under its internal pressure into a cold gas of uniform initfal
density. After the central gas had expanded to more than three times its
original radius, the deviations from sphericity were around 3 per cent.
Figure 24 shows the initial boundary between the gases, together with the
final particle configuration., The larger dotted line iIs a circular segment;
the heavy line separates particles of the two materials.

With this coarseness of mesh and small number of particles, deviations
are expected to be relatively large. Similar calculations with much finer
zoning and many more particles do give better results.
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Appendix I

OTHER METHODS FOR SOLVING 2-D PROBLEMS

There is a large difference in difficulty between 1-D and 2-D hydro-
dynamic problems, but any successful procedure for solving 2-D problems
is lkely to give relatively little difficulty when it is being applied to the '
analogous 3-D problems. Here we discuss briefly some other methods for
solving 2-D problems:

1. Moveable Coordinate (Lagrangian) Methods. The essential feature v
of these methods 1s that the coordinate system is a mesh of cells imbedded
in the fluld and moving with it. A typical application has each corner of
the mesh carrying a certain fixed mass of fluid as well as pressure, positfon,
and velocity which vary with time. The appropriate differential equations are
written in a finite difference approximation form and advancements of the
configuration in time are thereby related to space differences.
The Lagrangian approach has proved particularly useful for treating
systems involving several fluids, because each mesh point always retains
identity with its initial portion of the fluid. The interfluid boundaries are
always clearly delineated. A large number of strikingly successful calcula-
tions have been performed by several groups of workers.
The Lagranglan methods are limited, however, to use with systems in
which no large distortions of the fluid occur. In a finite~size mesh, various
topological catastrophes can happen which reduce further results to nonsense.
Indeed, rather serious doubt is cast upon the accuracy of representing the
true solution when, for example, a system whose equations were based on an
orthogonal mesh becomes distorted significantly away from orthogonality.
Problems involving oblique collision of two free surfaces are difficult
to solve by Lagranglan methods. é
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2. Fixed Coordinate (Eulerian) Methods. The essential feature of
fixed coordinate methods is that the coordinate system is not tied to the
fluid; wusually it is stationary in the laboratory frame of reference. Strict
application of this approach allows no identification of the fluld elements.
Each cell of the mesh is characterized by uniform density, pressure, 'color"
(l.e., designation of material kind), and velocity. Thus, finite space differ-
encing procedures for representing the differential equations can retain equal
applicability throughout a wide range of fluld distortions.

The principal difficulty with the striect Eulerian methods is that they
tend to introduce false diffusions, especially noticeable with material boun~
daries. This arises from the fact that each cell is forced to be homogeneous;
when material enters a cell, its characteristics are uniformly mixed with
those of all the other materials in the cell, '

3. Mixed Euler-Lagrange Systems. Many modifications have been pro-
posed—some have been tried —which take advantage of the better features of
both fixed and moveable coordinates. These include: (a) Fixed coordinates
in one direction, moveable in the other. Usually, advantage i1s taken of the
prior knowledge of slip-line positions. (b) Fixed coordinates but with, in
addition, a special Lagrangian treatment of interfluid boundaries. (c) Two
superimposed coordinate systems—an Eulerian one for calculating and ad-
vancing field functions and a Lagrangian one for keeping track of the positions
of material points. This procedure is generally somewhat extravagant in the
use of memory space in the computing machine,

4. Repulsive-Particle Methods. The fluid is represented by a system
of mass points of fixed mass whose coordinates vary with time. The pressure
in the fluid is represented by prescribing some repulsive interparticle force
which is a function of separation.

For example, the pressure in a polytropic gas in n-dimensional space
can be represented by an interparticle repulsive force

F ___——8 const.
1j arij {(rij)n(-y- 1)}

where y 1s the adiabatic exponent of the gas, and the constant varies with
entropy.

Many problems arise in the practical application of these and any other
methods for solving the differential equations of motion. Some of the diffi-
culties are the following.
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1. Stability of the difference equations. Instabilities may arise from
several sources which include: (a) Having too large finite time interval per
cycle—the classical "Courant instability." (b) Failure of the method when
an attempt is made to treat a situation of a type which the method is not
capable of handling. (c) Boundary instabilities. Free surfaces in Lagrangian
methods may be troubled by instability. The method presented in this re-~
port can suffer from a pecullar boundary instability under certain conditions.

2. The production of entropy. In order to allow for the presence of
shocks without special treatment, a dissipative mechanism must be present
in the difference equations. This 1s usually achieved in two ways: (a) An
artificial viscosity may be introduced into the equations. (b) The truncation
errors of the finite difference approximation can, under certain circumstances,
automatically provide sufficient dissipation.

Some success has been achieved by actually keeping track of shock
boundaries separately and relating field functions on both sides by the proper
conservation conditions. ' '

3. Accuracy of representation of the solution of the differential equations.
There is no guarantee that making the finite difference intervals smaller and
smaller will produce convergence to the true solution. Many authors have
devoted a large amount of analysis to this and related topics. Every slight
variation of procedure within the framework of any one method must be
examined for its contribution to inaccuracies.
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Appendix @I

AN ALTERNATIVE DERIVATION OF THE PIC DIFFERENCE EQUATIONS

by Eleazer Bromberg

Introduction

This section presents a derivation of PIC which emphasizes the role
of Lagrangian and Eulerian concepts. This approach may help to develop
variant numerical techniques when needed.

We shall assume for simplicity that the boundary of the domain D
under study is fixed and that no fluid crosses it; the resulting equations can
easily be modified to take account of different boundary conditlons. We shall
also assume that we are dealing with a single material, characterized by a
single equation of state relating the values of density p, pressure p, and
specific internal energy I of the material.

As in the customary Lagrangian formulation, the time rate of change
of position of a point in the fluid is equal to the velocity

X = % = u(x, t) | (A=1)

where x and u may be considered as scélars In one-dimensional problems
or as vectors {x;} and {uj} in two or more dimensions. Integration of
Equation (A-1) ylelds

X = X(x,,1) ' (A-2)

the position of any given point in the fluid as a function of time t and its
initial position Xq-
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A. Mass and Density

The density distribution at time t, p(x,t), must satisfy the mass-
conservation law which we write in integral form

_./V plx, 1)V = /Vo RERAA -y

where V is any reglon fixed in the fluid, Vg is its initial volume, p( is the
initial density distribution, and dV and dV, are corresponding elements of
volume. This ylelds the alternate form of the mass-conservation law

dV0 x0> ‘
P=Poay " Po J(‘; | o G

where dvy/dv is the J acobian in multidimensional cases. e

We now introduce the assumption that py is to be represented by a
delta function; that is, by a function which differs from zero only at a
finite number of points x;y, and which rises to infinity at each of those
points in a manner such that the volume integral of the density in any suf-
ficiently small neighborhood enclosing a particular point is a constant
characteristic of the point but independent of the size or shape of the volume
element. This constant is referred to as the "mass of the particle' as-
sociated with the point in question. These masses are chosen so as to
satisfy the conservation law: ‘

M=/ p(x,t)de/ p.(x.)dV

b b 00" 0
p.(x )dV

'/I.) 0o 0

I
M=

k=1 YD,
= B S (A-9)
k=1 "k «
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where D is the entire domain, which is considered to be divided up into n
subdomains such that each subdomain encloses only one point at which
Py is other than zero. For any arbitrary volume V, we obtain

' ‘/v p(x,t)dV = '/Vo Py AV = Z m, (A-6)

where the sum is taken over those particles to be found in the volume V at
time t. This volume may be so chosen as to be empty of particles at time
t, in which case the value of the corresponding integral will be zero. How-
ever, this does not interfere with the validity of the conservation law in the
large.

B. Solving the Dynamical Equations

Having established the characteristics of the density function, we can
turn to the momentum and energy conservation laws and develop the com-
putational process based on the above considerations.

We assume that the domain D is covered by a mesh which is chosen
so as to lead to simple expressions for the difference quotients representing
such quantities as gradient, divergence, and normal derivative associated
with any cell of the mesh. The mesh distribution does not, in general, have
any special relation to the subdomains in the previous section. The density
associated with any cell ¢ is obtained from Equation (A-6) by approximating
the integral on the left:

/v pdv =p V, (A-6")
C

from which it follows that

1
Pe =¥ Z m (A-6")
c Vc J

In the process of integration, we treat the mesh as Lagrangian at the
beginning of each time cycle, allowing each cell to be displaced, but then
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we immediately rezone so as to return to the original spatial mesh distri-
bution. Thus, each time cycle of integration of the momentum and energy
conservation equations is divided into two parts. In one, we deal with each
cell of the mesh as fixed in the fluid rather than in space to determine its
change of momentum and energy; this displaces its boundaries. In the
second phase, we rezone the cells (and mass points) in order to reintroduce
the original mesh distribution; in the process, we repartition momentum

. and energy so as to obtain new spatial distribution functions without affecting
the conservation of these quantities. The initial mesh structure is, there-
fore, kept fixed in the sense that it reappears at the end of each integration
cycle. This method is, consequently, not subject to the difficulties which
normally arise in the Lagranglan method as a consequence of the distortion
of the Lagrangian cells. We shall henceforth label the cells considered to
be fixed in the fluld L;, and those fixed in space Ei'

Phase 1

The momentum and energy conservation laws can be written as follows:

[

%‘/‘ pu dv = --/ pn dS (A=Tm)
D SD

_51_ pe dV = -(-i—- p(I + luz)dV = - (pu) ds (A~Te)
dt D dt D 2 S n

D
where
e = the specific total energy
I = the specific internal energy
dS = a surface element
(pu), = the normal component of pu
n(x,t) = the unit outward normal to the surface
Sp = the surface bounding volume D.

A similar set of equations applies to each cell of the mesh:

|
It Li pu dV = — SLi pn dS (A=8m) ,
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i/ IdV+df1u2dV— / ds A-8
at Li” dt 12" © T dsL, (puw), (A-Be)

but the volumes Lj and their surfaces SIL4y are now functions of time,
though they coincide with the fixed mesh at time t.
Integrating Equations A-8 between times t and t + 6t, we obtain

t+6t
/ pu dV f pu dV — / / pn ds dt (A-9m)
Li(t+6t) Li(t) t SLi(t)
f Idv -—% f pu2 dv — / pu2 dv| + / pldv
Li(t+6t) Li(t+6t) Li(t) Li(t)

t+0t
- / / (pu)n ds dt (A-9e)
t SLi(t)

in which each integrand is to be evaluated over the indicated domain at the
indicated time. There is considerable latitude in choosing the particular
formula for evaluating the integrals in (A-9) numerically In the present
report, we use the following prescriptions:

i

"

(a) The integrals over time are set equal to the value of the integrand
at the time corresponding to the lower limit of t, multiplied by 6t; that is,

t+ot '
/ f pndSdt =6t / pn ds (A~10m)
t SLi(t) SLi(t)

t+ot
f / (pu)_dS dt = 6t / (pu)_ dS (A=10e)
t SL,(t) n SL,(t)

(b) The volume Integrals, which are all of the form ‘/I:(T) pf dx,
i
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where f is any function of x and T may be either t or t + 6t, shall be
evaluated as:

A

where fyi(7) is the value of f associated with the cell L; at time 7. Since
the L; are being treated as Lagranglan cells,

pf AV = £ (1) / p AV (A-11)
L L

i(T) i('r)

f pdV=/ pdV=Zm=MIIlJ
L,(®) L, (t+0t) L ] i

the summation being taken over the mass points located within the cell L. :
The superscript n identifies the cycle of time integration (and hence

the time t). We use the following nomenclature for f:
2

1
N (A-12)
£ o(t+ot) =1
Ly Ly

The numerical integration formulae for Equations (A-8) [or (A-9)] can,
therefore, be written as

M =M u -6t / pn ds (A-13m)
s

2
MnT=—%Mn {(E)z — @) } + MnIn—Gt/ (pu_ ). dS
g n

(A-13e)

The subscript Ly is understood to be associated with each quantity in
(A-13).
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In general, the values of the integrand in the surface integrals must
be chosen so that when the Equations (A-13) are summed over all the cells
L; of the domain D, the sum of these integrals shall yleld just the surface
integral over the bounding surface SD. This implies that the contributions
of the surface integrals shall cancel at interfaces of adjacent cells (even
if one or more of these cells are empty of mass points). In the present
programs, the values of the integrand are determined from the relations

[o] =p 3>
at surface Ly 26n
[pu_] = + 22 ou) (A-13")
P4y, - Py (uLi)n 2 on P v
at surface

Each normal derivative is represented by a centered difference quotient,
that is, by the difference in the values of the quantity in properly chosen
opposite neighbors divided by the distance between the centers of these
cells. Account must be taken of the fact that (up,), will have the same
absolute value, but opposite sign, for any two opposed bounding surfaces of
a cell.

Phase I

1. Rezoning of Cells. Having determined the change of velocity and
specific internal energy associated with the Lagrangian cell Lj during the
interval 6t, we wish to rezone; that is, to determine corresponding quan-
titles associated with cells (which we shall call Ei> occupying the same
spatial positions as Lj(t) [or Lj(o), for that matter].

For this purpose, we note that for any function g(x,t) defined over a
cell Lj, at any time t,

d _d _
r PE dV—a{’/. pPg dV+/ pg u ds (A-14)

L, (®) E, SE,

where E1 is taken to be a fixed volume, equal to Lj(t), and SE1 is the sur-
face of E;.
Integrating Equation (A-14) with respect to time, we obtain
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/ pg dV — f pg dV = f p(x, t+6t) g(x, t+ét) dV
Li(t+6t) Li(t) Ei

—/ p(x,t) g(x,t) dV
Ei

t+ot
+ / / pg un ds dt (A-15)
t SE

i

Since E; = Li(t)’

f pg dV =/ px,t) g(x,t) v © (A-16)
L. (t) E, :

and the corresponding terms in Equation (A-15) cancel.
We now apply Equation (A-11) to the integral over Ej, and we use the

labels

n+1
gE (t+6t) = gE.
i i
(A-17)
/ p(x, t+6t) AV = Z m, = Mlg'l
E, E ] i
i , i
The expression (A-15) can be written as
t+o6t
Mrgl g‘;l - MIIZ ¥, - / / pg u_ ds dt (A-18)
i i i i t SEi

-
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i Ei,
n+l n+l n b+t '
Mg gp = Mg E’L - / f pg u_ ds dt (A-19)
i i i 71 Yt SE

The surface integral corresponds to the transport of g from one cell
to the other, resulting from the motion of the fluid. As in Phase I, it must
be evaluated in a manner such that the contributions of adjacent cells over
their common interface are equal and opposite. This can be done in various
ways; in the current computations, we replace g by E’Li so that the surface
integral becomes:

pgu dsdt=T7¢ / f pu_ ds dt
t SE, n L Ji SE} n

z t+6t
-S 7 / f plu | ds dt (A-20)
N 4NJy SE1* n

where the first integral on the right hand side is taken over those parts of
the surface where 'un is positive (the flow is out), and the second is taken
over those parts where the flow is inward. The quantity gy, is that of the
neighboring cell from which the flow is entering. The integrals yleld the
mass of material entering or leaving E; in accordance with the recipe pre-
scribed in Equation (A-6). This can be seen more readily by replacing u dt
by dx,; the latter is the component of the displacement of the fluid in time
dt normal to the surface element dS. The product dx  dS is the volume of
fluid passing through dS in time dt. A typical integral can, therefore, be
written as

t+6t t+ot
/ f pu ds dt = / / p 6V (A-21)
t SEI t SEi
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where 6V is used to indicate the special character of this element of volume.
Transforming in accordance with Equation (A-6), we get ‘

t+6t t+6t »
/ / p 6V = / / Py 8V, = > m . (A-22)
t SE, t SE, SE )

i, 6t

that is, the sum of the masses of the particles whose location has crossed
SE; in time 6t.

Summarizing Equations (A-19), (A-20), and (A-21), we obtain the typical
rezoning (or repartitioning) equation

Sl F - > omo+ LE > m
B B B L TLygg 30N LNg BN
, ]
n ~ . [ ~o '
= (M~ S m,>g + EQg Sim, > (A-23)
< B g )l W\ W N
where the last summation is over those neighboring cells from which particles
have entered E;. In the particular cases of momentum and energy, the
corresponding expressions are
n+l n+1 n ~ ~
M u .—_(M - Z mj>u + z <uN z mj,N> (A-24m)
out N in
n+l1 n+l n ~ ~ '
M e = (M - 2 mj> e + z <eN z mj,N> (A-24e)
out N in v
The appropriate cell subscripts can be determined from Equation (A-23).
The second of these (A-24e) is generally written so as to solve for m+1;
namely,
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: 2
+ -;— <Mn - Z m.> 712 + %Cﬁ; z mj,N> - Mn+1 (un+1> (A-24e')

out L

2. Relocation of Mass Points. In order to determine those mass points
which cross any cell interface in time 6t, it is necessary to keep track of
the positions of the mass points. This is accomplished by integrating Equa-
tion (A-1) during each time cycle:

ox_=u ot | (A-25)

or
xE+1 = xﬁ +u ot (A=25")

where the subscript k is used to identify each mass point and x . as its
initial position, as described at the beginning of this Appendix.

It is important to note that the Lagrangian formulation of the equations
of fluid flow (which are being used here) has as one of its basic assumptions
that any small volume element fixed in the fluid remains a small volume
element throughout the motion and always includes the same points of the
fluid, although its shape and size may be altered to some extent. This is
equivalent to the requirement that the mass points do not pass each other as
originally prescribed in the description of PIC. This condition is satisfied
if 6t is sufficiently small and if u(x,t) is represented by a continuous function
when used to determine the position of the mass points as in Equation (A-25)
or (A-25'). The value of uy, used in Equation (A-25') may be obtained by
some form of interpolation among the values of the cell velocity for groups

of neighboring cells using either o, U, u’E’l, or some combination of

B Ly E
these quantities. An effective method of interpolation is presented in the
body of this report (Chapter I). It can be described generally by the

formula
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where z a = 1, the . are weight functions, and Lij refers to the three
=0 ] i

neighboring cells.

C. Summary

The computational procedure can be summarized as follows:

We start with a suitably chosen mesh, a set of mass points, and the
values of the mass, velocity, and specific internal energy associated with
each cell. (The mass associated with each cell must be equal to the sum of
the masses of the mass points located in that cell.) Given these data at
the end of the n-th time cycle (which may be the initial time), we obtain the
corresponding values at the end of the (n + 1)st time cycle by solving the
following systems of equations:

1. For each cell:
p = p(Lp) (a-21)

the equation of state, where

s

= —_— — =0t

=2 =7 (A=6")
c C

where Vc is the volume of the cell, and

¥=u -2 | pnds | (A-13m)
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2
I=—— | — (@) } + In - —-/ (pu) dS (A~13e)
2 Mn Sc n

in which the surface integrals may be evaluated by any one of several methods
described elsewhere. These methods must always be consistent with over-

all conservation laws and generally also have to provide for such contin-
gencies as “empty" cells and special types of boundaries (such as the axis

of symmetry in cylindrical problems).

2. For each mass point:

X =x u_, 0t (A-25"M)

where u has the form
eff

u = uoo+ > @ U - (A-28)
off ~ %k, Lo & Tk L

N .
> e =1 (A-29)
=0

and u o is a velocity associated with the cell in which the point is located,
i
uL.1 to uL-N are similar velocities associated with neighboring cells, and
i i
the @ are weight functions.

Kk,
J

For each cell:

Y G VL S m (A-30)
out in ’
n+1 1 n ~ ~
u = M - z m) u + z (u z m, ) (A-24m")
ML [( out ! N \ Nip BN




(A-24e")
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Fig. 5 Temperature profile for a shock having hit a density increase.
Straight lines form the theoretical profile.
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Fig. 22 Horizontal momentum in KAREN problem.,
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Fig. 23 Vertical momentum in KAREN problem.
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